Lifetime Enhancement in Efg Multicrystalline Silicon
نویسندگان
چکیده
for three different back surface recombination velocities (BSRV). The calculations reveal that the carrier lifetime limits the screen-printed (SP) EFG Si cell efficiency for lifetimes below -30 /-Is. For a 300 /-1m thick device, the carrier lifetime should be greater than 30 /-Is to realize the full benefit of a low BSRV. Therefore, lifetime enhancement is essential for achieving high efficiency solar cells on low cost Si ribbon materials. ABSTRACT
منابع مشابه
Recombination and Trapping in Multicrystalline Silicon Solar Cells
In broad terms, this thesis is concerned with the measurement and interpretation of carrier lifetimes in multicrystalline silicon. An understanding of these lifetimes in turn leads to a clearer picture of the limiting mechanisms in solar cells made with this promising material, and points to possible paths for improvement. The work falls into three broad categories: gettering, trapping and reco...
متن کاملLight Induced Degradation in Manufacturable Multi-crystalline Silicon Solar Cells
Traditional Czochralski grown Si solar cells are known to suffer from light induced degradation (LID) which adversely affects the minority carrier lifetime. Multi-crystalline Si has also been shown to show a similar degradation/recovery cycle after a phosphorus gettering step. In this paper, promising ribbon and cast multi-crystalline Si are examined for light induced degradation. High oxygen m...
متن کاملHydrogenation effect on low temperature internal gettering in multicrystalline silicon
We have performed a comprehensive study into low temperature ( 500 °C) internal gettering in multicrystalline silicon (mc-Si). Two groups of as-grown mc-Si wafers from different ingot height positions were subjected to the same thermal treatments with surface passivation by either silicon nitride (SiNx:H) or a temporary iodine-ethanol (I-E) chemical solution . With either passivation scheme, l...
متن کاملLifetime Enhancement and Low-Cost Technology Development for High-Efficiency Manufacturable Silicon Solar Cells
A low-cost, manufacturable defect gettering and passivation treatment, involving simultaneous anneal of a PECVD SiNx film and a screen-printed Al layer, is found to improve the lifetime in Si ribbon materials from 1-10 μs to over 20 μs. Our results indicate that the optimum anneal temperature for SiNx-induced hydrogenation is 700°C for EFG and increases to 825°C when Al is present on the back o...
متن کاملIncreasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering
(2016) Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC...
متن کامل